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Abstract. A new method for calculating delocalized positron wavefunctions in 
erystdline solids is presented. The wavefunction is expressed by a superposition of 
localized spherical orbitals (LSO) centred at atomic sites. The orbitals are constructed 
using an effective numerical-basis-set LCAO expawion: the basis fundi- are the 
solutions of an atomic-like differential equation and have, therefore, the correct cusp 
near the nudei. The resulting wavefunction is continuous and h a  derivatives of 
first order except at the Coulomb singular points of the potential where it is exad 
by construction It is shown that the Is0 anaatr gives accurate results for the 
positron wavehmction, especidly in solids with high (e.g. cubic) symmetry of the 
crystal lattice, and, if necessary, how it can be a w n t e d  effectively. The simple 
representation of the wavefunction makes it suitable for a direct use in the calnrlation 
of expectation values, as e.g. annihilation rates. As an example, OUT method is 
applied to a positmn in BCC lithium: the results obtained for the wavefunction 
and the ground-state energy are compared with those of an expansion in terms of 
symmetrized plane waves. 

1. Introduction 

Measurements of positron annihilation radiation are a valuable method to obtain in- 
formation about the momentum distribution of electrons in solids. For interpretations 
of experimental results or for calculations of annihilation rates by theoretical means, 
the knowledge of the electronic structure and also of the spatial distribution of the 
positron is necessary. This paper deals with the determination of the positron wave 
function. For this purpose, many traditional band-structure models have been used in 
the literature: the Wigner-Seitz approximation of a spherical cell (Berko and Plaskett 
1958), the expansion in terms of symmetrized plane waves (Stroud and Ehrenreich 
1968), the pseudopotential theory (Stott and Kubica 1975) and the augmented-plane 
wave (APW) approach (Gupta and Siege1 1977, 1980), Green-function techniques in 
the KKR method (Korringa 1947, Kohn and Rostoker 1954) for perfect-crystal band 
theory and in the multiple scattering approach to deal with random alloys (for review 
articles see: Ehrenreich and Schwartz 1976, Mijnarends 1987), the linear-muffin-tin- 
orbital method (LMTO) within the atomic spheres approximation (ASA) (Singh and 
Jarlborg 1985, Puska et al 1986, Boev et  ~l 1987), the linear combination of gaussian 
orbitals (LCGO) (Sundararajan el al 1988), numerical methods using finiteelement 
techniques (Puska and Nieminen 1983) and others (for review articles see: Mijnarends 
1979, Puska 1987). 

0953-8984/91/080889+10$~.50 @ 1991 IOP Publishing Ltd 889 



890 W Obermayr 

For the determination of accurate expectation values as-for example-high- 
momentum components (HMC) of annihilation rates, three aspects are of importance: 
Firstly, the (local) potential for the positron should be as general as possible (without 
restrictions in contrast to  muffin-tin or ASA, etc). Secondly, the positron wavefunction 
should be accurate both in the core region and in the interstitial region and thirdly, 
the mathematical representation of the wavefunction should be simple enough for a 
direct use in the calculation of expectation values-without further approximations 
necessary. 

These conditions are fulfilled by the method described in this work: the delocal- 
ized positron wavefunction is represented by the superposition of localized spherical 
("type) orbitals (EO) centred at atomic sites. The orbitals are constructed using a 
(theoretically complete) numerical-basis-set LCAO (linear combination of atomic or- 
bitals) expansion (subsection 2.1). The basis functions are calculated in a manner 
very similar to the method Zunger and Freeman (1976, 1977) used in electron band- 
structure calculations: they are the solutions of a one-particle central-field SchrGdinger 
equation with a potential near the centre which is almost identical with the potential 
around the atoms in the crystal. Therefore the functions have the correct cusp and 
are very effective in the expansion. In subsection 2.2 is shown how the LSO method 
gives highly accurate results for the positron wavefunction both in the vicinity of the 
nucleus (by construction) and in the interstitial region (compared with the plane-wave 
expansion). In section 3 the method is applied to a positron in lithium: the wave- 
function and the expectation values for the ground-state energy are calculated and 
compared with the results of a plane-wave expansion. The determination of annihilb 
tion rates, using the LSO method, is discussed: accurate results may be obtained by 
direct numerical computation of the matrix elements. 

2. Method of calculation 

2.1. Conslmcfion of the positron wavefunction 

Using the two-component density-functional theory (Chakraborty and Siege1 1983, 
Boronski and Nieminen 1986), the Kohn-Sham method (Kohn and Sham 1965) and 
the local density approximation (LDA) for the electron-positron correlation energy, the 
Schrodinger equation for a delocalized positron in a metal can be written, in atomic 
units, as 

Hf $t (r) = Et $+ (r) (1) 

with 

Z is the atomic number and R, are the vectors of the crystal lattice. nt and n- are 
the positron and electron densities, respectively, and ~f;;++~ is the electron-positron 
correlation-potential for one positron in a homogeneous electron gas. The result of 
Arponen and Pajanne (1979) as interpolated by Boroiski and Nieminen (1986) was 
used for the calculations in section 3. For the sake of clarity, a metal is chosen which 
contains one atom per unit cell, but this is not a restriction on the method described; 
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it can be generalised easily to more complex solids. In contrast to other methods (for 
example, the muffi-tin approach or ASA), no approximation of the (local) potential 
is necessary. 

On account of its thermalization (Lee-Whiting 1955), the positron is assumed to be 
in the ground-state at k = r with energy Ef(r,). For this special case it follows from 
the Schrodinger equation that the function $+ is real (apart from a phase factor) and 
that it has the periodicity and the point symmetry of the crystal lattice. Therefore it 
can be written as 

R, 

and a suitable function x(r) has to be determined. 

conditions: 

and in particular 

In order to satisfy the principles of quantum mechanics, x has to fulfil the following 

(i) $+ may be normalized to the WignerSeitz cell. Therefore x is square integrable 

is valid: x is a localized function. 
(ii) $+ is a continuous function and has derivatives of first order except at the 

Coulomb singular points of the potential. In the vicinity of the nuclei, the potential 
has spherical symmetry; separating the Schrodinger equation in spherical coordinates 
one easily finds (Kato 1957) 

which requires 

= 2. (3) 

(iii) Since the positron is in the ground state rl, $’- possesses the same point 
symmetry as the crystal lattice. For further investigations it is useful to expand X(r) 
in spherical harmonics K,,, (r)  

where clm are the expansion coefficients. Applying the point symmetry operations of 
the lattice to the wavefunction, the symmetry conditions may easily be derived: if 
there exists a centre of inversion, only even I participate in the expansion. Further 
symmetries lead to additional conditions: for example, in cubic crystals, orbitals with 
I = 2 give no contribution to the expansion (for cubic harmonics see, e.g., Mueller 
and Priestley 1966). In the case that there is no contribution of 1 = 1 (lattice with 
a centre of inversion), the cusps of the positron wavefunction at the atomic sites are 
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exclusively described by the orbital with l = 0: due to clm(r) U rf c,,(O), orbitals 
with l >  2 have no effect on the relation (3). 

Neglecting orbitals with 1 2 2 for crystals with a centre of inversion and with 1 2 4 
in cubic lattices, the function x(r)  may be simplified to X(r) and $+ in equation (2) 
reduces to 

x(r) is a localized (see condition (i)) spherical orbital (LSo). If x is determined by the 
variational method due to the minimal property of the positron ground-state energy, 
it is not identical with coo(r) of equation (4): it also contains some (averaged) parts 
of higher orbitals, and the overlap of the x(r), centred at different atomic sites, leads 
to the anisotropies in the interstitial region. This is also illuminated by a Werent 
theoretical point of view given in subsection 2.2. 

For the determination of x(r) ,  an optimized LCAO version is used. Therefore it is 
expanded in terms of appropriate (s-type) functions pn 

N 

X N ( d  = c, (D"(r). (6) 
YI-1 

Theoretically, each function set that is complete in (0,m) may be used, but many of 
them are not favourable, because they do not have the correct cusp near the nuclei 
(condition (ii)): in materials where the cusp of the positron wavefunction is weak (this 
is common for heavy atoms), s Gaussian orbitals (see Wang and Callaway 1978) may 
be used (see, e.g. for copper, Sundararajan et al 1988) whereas in the other case (light 
materials, see e.g. lithium in section 3), Slater-type orbitals are more appropriate. 

In the present work, the pn have been calculated numerically in a way similar to the 
method Zunger and Fteeman (1976,1977) developed for the electron basis-set in LCAO 
band-structure calculations: they are chosen as the solutions of a central-field one- 
particle atomic-like SchrGdinger equation. Due to (5), only the angular-momentum 
I = 0 is needed. Therefore, the radial part p satisfies the dflerential equation 

Z 
[ v ( r ) ]  f 2 [. - ; + u(r) - A(r) ]  p(r) = 0. 

1 a 2  _ -  
r (7) 

u(r) is the spherical part of the effective positron potential in Hf of equation (1). A(r) 
is a potential term used for two reasons: Firstly it is necessary to get localized states 
and secondly it can be chosen to tailor the functions for their use in the variational 
calculation. The ansatr 

is appropriate and guarantees a complete set of localized states p,. 
The potential A(r)  is also used in electron LCAO band-structure calculations to 

cut off the long-range tail of atomic states (Eschrig and Bergert 1978). It has the 
advantage that the orbitals used in the expansion are of higher efficiency and that the 
enormous number of multi-centre integrals is reduced. According to this work, the 
value 7 = 4 is chosen for the present calculations. 
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The choice of ro is performed in order to get an optimized basis-set {$on} which 
is well suited for the construction of X(r)-that means that a minimum number N 
of functions is sufficient to achieve good convergency in the expansion (6) (see also 
figure 1). For this reason, the differential equation (7) is solved for the ground-state 
wavefunction $ o I ( r ; p o )  with r,, as a parameter, and the expectation value for the 
positron energy in the crystal is then calculated by 

( I l+ ' ( .O)  IH+ I P ( f - 0 ) )  = E h )  

$+'(T;p,,) =c1 ~ v J I ~ - ~ i t ; d  

with 

R; 

H+ is the Hamiltonian of the crystal for the positron of equation (1) and c1 is a con- 
stant used to normalize $+'. The value of ro with the lowest energy E t  is chosen for 
the further calculations: it produces a potential which yields eigenfunctions converg- 
ing rapidly towards X(T) in the expansion (6) and, therefore, minimizes the numerical 
effort. 

1 5 10 15 
N N 

Figure 1. The convergence of (a) the ground-state energy (the energy zero is ar- 
bitrary) and of (a) the value of the positron wavefunction at atomic site RSUS the 
nmber N of functions wed in the numerical bmk-set LCAO exp-on within the 
LSO appoach (nuves A), and in the expansion in t e m  of symmetrized plane waves 
(curves B). 

That a minimum value for the energy exists can be seen from the extreme values 
for r,,: if it is chosen very small the positron wavefunction $+' is located very close 
to the nuclei and the potential energy is vety high. If r,, is increased, the energy is 
lowered as long as the positron goes from the atomic to the interstitial region. Here 
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the minimum value is found. If ro is further enlarged, the wavefunction becomes very 
flat and the positron is closer to the nuclei again (due to the overlap of the 'pl located 
on different atomic sites) resulting in a higher energy. By the way it can be seen 
that the ro which be lone  to the lowest energy E:, would tend to infinity only if the 
exact positron wavefunction were constant, and this is excluded by the presence of the 
nuclei. 

When ro is determined, the eigenfunctions of equation (7) with n > 1 are calcu- 
lated and used in the expansion (6). The coefficients e, are found by the minimum 
principle for the positron ground-state energy in the crystal. Writing the positron 
wavefunction (5) as 

with 

variation leads to the N x N generalized eigenualue problem 

H i j  cj = E S;j cj 
j j 

H i j  = ($$ (H+ 14;) SSj = (+: I @  ). 

The matrix elements H i j  are calculated numerically by a three-dimensional integration 
over the irreducible wedge of the Wigner-Seitz cell-thus no approximation of the 
potential is necessary. Since the functions rp,(r) are solutions of equation (7) with 
a potential which is around the atom almost equivalent to the potential in H+, the 
number N of functions needed is small (four to five). This is demonstrated in the case 
of lithium in figure 1. 

2,Z. On the representability of the positron wavefunction b y  the Iocalired-spherical- 
orbital (LSO) ansatz 

The positron wavefunction $+ can be represented without any approximation by a 
symmetrized plane wave +Zw: 

++(') +&(T) = a s , f s , ( f )  fs,(.) = e 4 G . r )  (8) 
S, DES. 

Si stands for the i th star of vectors of the reciprocal lattice G: all coefficients a 
belonging to lattice vectors of the same star are equal. 

I t  is of interest to find out which positron waves can be described by the Lso 
ansatz ( 5 )  

@so(') = x(l. - &I). 
R. 
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Since only %type orbitals are used in this ansatr, it is obvious that it is not as powerful 
as (8). To find the connexion between (5) and (8) we determine the Fourier components 
e, of Using the Fourier transform x(p) of x(r) 

x(p) = 1 x(r) exp(-ip*r) d3r 

we obtain 

and therefore 

= elGI. (9) 

The Fourier coefficients of depend only on the absolute value of the reciprocal 
lattice vector G. This variety is smaller than in the case of the symmetrized plane 
wave (8) because there exist different stars with the same absolute values. In other 
words, the relation (9) is a necessary condition for the construction of a function using 
the expansion (5). 

This gives-for example in cubic lattices-an explanation for the high accuracy of 
both in the core and in the interstitial region: In a FCC lattice the first stars 

with the same absolute values are SI, and SI, (see figure 2), in a BCC lattice this is the 
case for S,, and S12. In (8), the corresponding coefficients contribute to the positron 
wavefunction almost only in the vicinity of the nuclei where the curvature is strong: 
but in this region is exact by construction (see point (iii) of subsection 2.1). 
Therefore it can be concluded that for the exact positron wavefunction relation (9) is 
fulfilled to a very high degree and by far sufficient for numerical calculations. This 
result is demonstrated for lithium in figure 2. 

If the positron wavefunction is not represented sufficiently accurate by the LSO 
ansatz (5) (this may happen in materials with low symmetry of the crystal lattice (see 
point (iii)) or with a basis), it can be augmented by two additional function sets: 

(1) orbitals xr with higher angular-momentum 1 can be included, and/or 
(2) a fast convergent symmetrized plane wave expansion can be added: the orbitals 

x describe the strong curvature of the positron wavefunction near the nuclei and the 
plane waves improve the wavefunction in the interstitial region. 

3. Application to lithium: results and discussion 

The electronic structure of BCC lithium was calculated by the method of Zunger and 
Freeman (1976, 1977). We want to emphasize that the same computer programs as 
written for the electrons can be applied without any modification to the positron 
wavefunction by the use of the present method. 

In figure I (a ) ,  the convergence of the positron ground-state energy in dependence 
of the number N of functions used is shown. It can be seen that four numerical LCAO 
functions give a lower energy than 16 symmetrized plane waves (this are 321 plane 
waves). The results for five and six LCAO functions show that enough functions have 
been included to obtain good convergency. 



896 W Obemayr 
. .  

.. 
0 1 1 3 4 5 6  

p (in ""11% 21/.) 

Figure 2. The Fourier transform x(p) of x(7) (-) compared with the coefficients 
of the expansions in le- of five (A)and 16 (0) symmetrized plane waves. The 
values for the coefficient [OOO] are 0.99151,0.99100 and 0.99141. respectively. Q is the 
lattice constant. 

A similar situation is found for the value of the positron wavefunction at the atomic 
site @(Ei) (see figure l(b)) .  It shows the behaviour of the wavefunction around the 
nuclei. The (finite) plane-wave expansion leads to a too high value and including more 
coefficients, the convergency is very slow. Comparing figures l(a) and l(b),  it can be 
found that there exists a correlation between this function value and the ground-state 
energy: a decrease of the function value results in a similar amount of decrease of the 
energy value. This shows that the energy is very sensitive to the behaviour of the 
wavefunction around the nuclei (due to the singular point of the Coulomb potential). 

The effort of the calculation of the numerical expansion functions p(r) is rewarded 
by afast convergency to the function x(r) of (5). x(r) is shown in figure 3(a) and the 
resulting positron wavefunction in figure 3(b ) .  It is not only exact around the nuclei 
by construction (cusp condition (3)) but also very accurate in the interstitial region: 
by graphical resolution no difference to the plane-wave result, using 16 symmetrized 
plane waves, is found. 

An important application of the knowledge of the positmn and electron wavefunc- 
tions is their use in the calcuIation of annihilation rates. In the independent particle 
approximation (IPA) (Lee 1958, for a review article see e.g. Mijnarends 1979), the 
probability per unit time of annihilation under emission of a photon pair carrying 
away a total momentum p is proportional to the 'twc-photon momentum density' 
(TPMD) p ( p ) ,  which is given by 

The temperature is assumed to be zero. $- and ++ are the electron and positron 
Bloch wavefunctions, respectively, k is the wave vector and n the band index. The 
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Figure 3. (a) The function ~ ( 7 )  within the Lso-method and (a) the pmitmn w a v e  
hrnnion in (BCC) lithium dong symmevy directions: lhe result of the Lso-method 
(-) compared wirh an expeasion using 16 symmetrized pkne w a v e  (321 plane 
waves) (- - -) (The positron wavefunction i s  n o d z e d  IO one in the unit cell, a is 
the Iatric+ connant.). 

positron is in the ground-state and the summation extends over all occupied electron 
states. For large p ('Umklapp' processes: p is outside the firsr Brillouin zone) the 
exponential factor varies rapidly over the cell and p ( p )  depends sensitively on the 
producc of the electron and positron wavefunctions. Therefore it is important thar 
equation (10) is evaluated without any approximation. This is possible using the LSO 
representation of the positron wavefunction: the three-dimensional integration over 
the cell can be performed by direct numerical computation and, therefore, accurate 
results are obtained. Applications of this method to lithium and ocher materials 
(e.g. higher alkali metals) are in work and a detailed description of the results will be 
given elsewhere. 

4. Summary 

In the present paper, the LCAO method is applied to the calculation of positron wave- 
functions in crystalline solids. The wavefunction is expressed by a superposition of 
localized spherical orbitals (LSO) centred at atomic sites. This ansalr is exact around 
the nuclei (like a Wigner-Seitz approximation), but it is also able to describe the 
anisotropies of $+ in the interstitial region. Unlike to previous work (Stroud and 
Ehrenreicb 1968, Sundararajan el al 1988, etc), we use numerical functions as basis- 
set for the LCAO expansion of the orbitals in order to optimize convergency. Due to 
this fact and due to its simple mathematical representation, our LSO expansion of $+ 
is very well qualified for numerical computations of expectation values like annihilation 
rates etc. Another advantage of the application of the LCAO method to the problem 
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of calculating positron wavefunctions is that one is not restricted to use special forms 
of the positron potentials like, for example, a muffi-tin approximation. 

The problem of the numerical evaluation of the Wigner-Seitz cell integration, 
which is a key problem for all LCAO electron calculations, is very much softened by 
the fact that we are only interested in the positron rl Bloch state which has the 
full symmetry of the lattice. For simple materials with one or two atoms per unit 
cell, the integrand can be expressed in polar or elliptic coordinates, respectively, in 
order to remove the Coulomb singularities. For more complicated structures, standard 
integration routines or the techniques known from electron LCAO calculations (see, e.g., 
Freeman and Zunger 1977, 1978 and references therein) may be used. 
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